日本三级欧美三级人妇视频黑白配,久久久久亚洲av无码,国产精品久久无码一区,欲妇荡岳丰满少妇岳

咨詢電話:13699145010
article技術(shù)文章
首頁 > 技術(shù)文章 > 影響電擊穿、電氣強(qiáng)度、擊穿電壓設(shè)備的因素有哪些?

影響電擊穿、電氣強(qiáng)度、擊穿電壓設(shè)備的因素有哪些?

更新時間:2024-05-11      點(diǎn)擊次數(shù):671

固體電介質(zhì)和液體電介質(zhì)的擊穿特性

固體電介質(zhì)和液體電介質(zhì)電氣強(qiáng)度一般都比空氣的電氣強(qiáng)度高得多,其用作內(nèi)絕緣可以大大減小電氣設(shè)備的結(jié)構(gòu)尺寸,因此被廣泛用作電氣設(shè)備的內(nèi)絕緣和絕緣支撐等。最常見的固體電介質(zhì)有絕緣紙、環(huán)氧樹脂、玻璃纖維板、云母、電瓷、硅橡膠及塑料等,應(yīng)用得最多的液體電介質(zhì)是變壓器油。固體電介質(zhì)和液體電介質(zhì)與氣體電介質(zhì)電氣特性有很大不同。首先固體及液體的有機(jī)介質(zhì)在運(yùn)行過程中會逐漸發(fā)生老化,從而影響絕緣的電氣強(qiáng)度和壽命;其次固體電介質(zhì)一旦發(fā)生擊穿即對絕緣造成不可逆轉(zhuǎn)的性破壞,故稱其為非自恢復(fù)絕緣;固體電介質(zhì)和液體電介質(zhì)擊穿機(jī)理與氣體電介質(zhì)也不同。雖然目前人們對固體和液體電介質(zhì)擊穿過程的理解不如氣體的那么清楚,但已經(jīng)提出了幾種不同的擊穿機(jī)埋。

影響電擊穿、電氣強(qiáng)度、擊穿電壓設(shè)備的因素有哪些?影響電擊穿、電氣強(qiáng)度、擊穿電壓設(shè)備的因素有哪些?

4.1固體電介質(zhì)的擊穿機(jī)理

在電場作用下,固體電介質(zhì)擊穿可能會因電的作用、熱的作用或電化學(xué)的作用所引起,因此擊穿過程比較復(fù)雜。

4.1.1 電擊穿

固體電介質(zhì)的電擊穿是指僅由于電場的作用而直接造成固體絕緣擊穿的物理現(xiàn)象。

關(guān)于固體電介質(zhì)擊穿的機(jī)理有種種理論和假設(shè),歸結(jié)起來即認(rèn)為在強(qiáng)電場下固體電介質(zhì)內(nèi)部存在的少量帶電粒子作劇烈的運(yùn)動,與固體電介質(zhì)晶格結(jié)點(diǎn)上的原子發(fā)生碰撞電離,形成電子崩,從而破壞了固體介質(zhì)的晶格結(jié)構(gòu),使電導(dǎo)增大而導(dǎo)致擊穿

擊穿的主要特點(diǎn)是擊穿電壓與周圍環(huán)境溫度無關(guān),與電壓作用時間也關(guān)系不大,介質(zhì)

形成電子崩,從而破壞了固體介質(zhì)的晶格結(jié)構(gòu),使電導(dǎo)增大而導(dǎo)致擊穿

擊穿的主要特點(diǎn)是擊穿電壓與周圍環(huán)境溫度無關(guān),與電壓作用時間也關(guān)系不大,介質(zhì)發(fā)熱不顯著;但電場的均勻程度對擊穿電壓影響很大。電擊穿所需的場強(qiáng)比較高,一般可達(dá)105106kV/m。當(dāng)介質(zhì)的電導(dǎo)很小,又有良好的散熱條件以及介質(zhì)內(nèi)部不存在局部放電時,固體電介質(zhì)所發(fā)生的擊穿一般為電擊穿

4.1.2 熱擊穿

擊穿是由于電介質(zhì)內(nèi)部的熱不穩(wěn)定所造成的。當(dāng)固體電介質(zhì)較長時間地處在外電壓作用下,由于介質(zhì)內(nèi)部的損耗而發(fā)熱,致使溫度升高,從而使介質(zhì)的電導(dǎo)和tanδ都增大,這反過來又使溫度進(jìn)一步升高。若到達(dá)某一溫度后,發(fā)熱量等于散熱量,介質(zhì)的溫度則停止上升而處于熱穩(wěn)定狀態(tài),這時將不致引起絕緣強(qiáng)度的破壞。然而,這種熱穩(wěn)定狀態(tài)不是在任何情況下都能建立的。如果散熱條件不好,或電壓達(dá)到某一臨界值,使絕緣的發(fā)熱量總是大散熱量,這時將會使介質(zhì)的溫度不斷升高,直至介質(zhì)分解、熔化、碳化或燒焦,造成熱破壞而喪失其絕緣性能,這就是熱擊穿的過程。

在交流電壓作用下,單位體積介質(zhì)的功率損耗P隨溫度的升高增大,且關(guān)系式為

影響電擊穿、電氣強(qiáng)度、擊穿電壓設(shè)備的因素有哪些?

式中:tanδ0為溫度t0時的介質(zhì)損耗角正切;t為溫度;δ為與介質(zhì)有關(guān)的系數(shù);C為絕緣結(jié)構(gòu)的電容;U為外加電壓

單位時間產(chǎn)生的熱量Q1介質(zhì)損耗功率P成正比,即

影響電擊穿、電氣強(qiáng)度、擊穿電壓設(shè)備的因素有哪些?

                    影響電擊穿、電氣強(qiáng)度、擊穿電壓設(shè)備的因素有哪些?

式中:A為比例常數(shù)

假定產(chǎn)生的熱量只能從電極兩邊散出,則單位時間內(nèi)散出的熱量Q2

影響電擊穿、電氣強(qiáng)度、擊穿電壓設(shè)備的因素有哪些?

式中:σ為散熱系數(shù);S為散熱面積。

Q1Q2與溫度的關(guān)系可用圖4-1來表示。由于體電介質(zhì)tanδ隨溫度按指數(shù)規(guī)律上升,Q1也隨溫度按指數(shù)規(guī)律上升(圖1-1中曲線1~3),Q2則與溫度呈線性關(guān)系(見圖4-1中曲線4)。在不同的外加電壓下,可畫出不同的發(fā)熱曲線Q1(U1)、Q1(U2)、Q1(U3),此處U1U2U3顯然,只有發(fā)熱量和散熱處于熱平衡狀態(tài)時,即Q1=Q2介質(zhì)才會處于熱穩(wěn)定狀態(tài),具有某一穩(wěn)定的工作溫度,不會發(fā)生熱擊穿

由圖4-1可見,當(dāng)電壓為較低值U1時,相應(yīng)的發(fā)熱曲線Q(U1)與Q2相交于A點(diǎn),對應(yīng)的溫度為tAA點(diǎn)為穩(wěn)定的工作點(diǎn)。一旦介質(zhì)溫度上升,t>tA,則由于散熱量大于發(fā)熱量,將使溫度下降到tAt<tA則由于發(fā)熱量大于散熱量又會使溫度再回升到tA,所以介質(zhì)就有一個穩(wěn)定的工作溫度tA,不會引發(fā)熱擊穿

影響電擊穿、電氣強(qiáng)度、擊穿電壓設(shè)備的因素有哪些?

當(dāng)電壓升高到U2時,相應(yīng)的發(fā)熱曲線Q1(U2)與Q2相切于K點(diǎn),對應(yīng)于K點(diǎn)的溫度為tK K點(diǎn)是不穩(wěn)定的熱平衡點(diǎn),僅僅在t=tK時才達(dá)到熱平衡。如果有偶然因素使介質(zhì)溫度略有升高,則由于Q1Q2而使溫度繼續(xù)升高,直到發(fā)生熱擊穿,因此,可以將電壓U2看作是發(fā)生熱擊穿的臨界電壓值。這是因?yàn)楫?dāng)U>U2時,曲線Q1(U3)不再與Q2有交點(diǎn),這時不論在什么溫度下總是發(fā)熱大于散熱,使介質(zhì)的溫度不斷上升,必然會造成熱擊穿

擊穿的主要特點(diǎn)是擊穿電壓隨環(huán)境溫度的升高呈指數(shù)規(guī)律下降,擊穿電壓直接與介質(zhì)的散熱條件相關(guān)。由于厚度大的介質(zhì)散熱困難,所以熱擊穿電壓并不隨介質(zhì)厚度成正比增加。熱擊穿需要熱量的積累,而熱量的積累需要時間,因此加壓時間短時,熱擊穿電壓將增高。此外,電壓頻率或介質(zhì)tanδ增大,都會使介質(zhì)發(fā)熱量增大,導(dǎo)致熱擊穿電壓下降。

4.1.3 電化學(xué)擊穿

固體電介質(zhì)在長期工作電壓作用下,由于介質(zhì)內(nèi)部發(fā)生局部放電,產(chǎn)生活性氣體O3NO、NO2,對介質(zhì)產(chǎn)生氧化和腐蝕作用,同時產(chǎn)生熱量引起局部發(fā)熱,以及在局部放電過程中帶電粒子的撞擊作用,導(dǎo)致絕緣劣化或損傷,使其電氣強(qiáng)度逐步下降并引起擊穿的現(xiàn)象稱為電化學(xué)擊穿。電化學(xué)擊穿是一個復(fù)雜而緩慢過程,在臨近最終擊穿階段,可能因劣化處損耗增加,溫度過高而以熱擊穿形式完成;也可能因介質(zhì)劣化后電氣強(qiáng)度下降,而以電擊穿形式完成。

在電化學(xué)擊穿中,還有一種樹枝狀或叢狀放電的情況,這通常是發(fā)生在有機(jī)絕緣材料(如交聯(lián)聚乙烯)的場合。當(dāng)有機(jī)絕緣材料中因小曲率半徑電極、微小空氣隙、雜質(zhì)等因素而出現(xiàn)高場強(qiáng)區(qū)時,往往在此處先發(fā)生局部的樹枝狀或叢狀放電,并在有機(jī)固體介質(zhì)上留下纖細(xì)的放電痕跡,這就是樹枝狀放電劣化。在交流電壓下,樹枝狀放電劣化是局部放電產(chǎn)生的帶電粒子沖撞固體介質(zhì)引起電化學(xué)劣化的結(jié)果。在沖擊電壓下,則可能是局部電場強(qiáng)度超過了材料的電擊穿場強(qiáng)所致。

4.2影響固體電介質(zhì)擊穿電壓的因素

影響固體電介質(zhì)擊穿電壓的因素很多,下面僅對主要影響因素作一些介紹。

4.2.1 電壓作用時間

以常用的油浸電工紙板為例,如圖4-2所示,以其1min工頻擊穿電壓(峰值)為基準(zhǔn)值(100%),縱坐標(biāo)用標(biāo)幺值表示。電擊穿與熱擊穿的分界點(diǎn)時間在105106μs之間,電壓作用時間大于此值后的穿為熱擊穿,小于此值的擊穿則屬于電擊穿。由圖可見,電壓作用時間越長,擊穿電壓越低,1min擊穿電壓與更長時間的擊穿電壓已相差不大。所以,通常可將1min工頻試驗(yàn)電壓作為基礎(chǔ)來估計(jì)固體電介質(zhì)工頻電壓作用下長期工作時的熱擊穿電壓。尚需指出,許多有機(jī)絕緣材料的短時間氣強(qiáng)度雖然很高,但由于它們耐局部放電的性能 較差,以致其長時間電氣強(qiáng)度較低,這一點(diǎn)必須予以重視。在那些不可能用油浸等方法來消除局部放電的絕緣結(jié)構(gòu)中(如旋轉(zhuǎn)電機(jī)),就必須采用云母等耐局部放電性能好的無機(jī)絕緣材料

影響電擊穿、電氣強(qiáng)度、擊穿電壓設(shè)備的因素有哪些?

由圖4-2還可以看出,在電擊穿區(qū)域內(nèi),在較寬的時間范圍內(nèi)油浸電工紙板擊穿電壓電壓作用時間幾乎無關(guān),只有在時間小于微秒級時擊穿電壓才隨電壓作用時間減小而升高,這一點(diǎn)與氣體放電的伏秒特性很相似。其雷電沖擊擊穿電約為工頻擊穿電壓3倍。

4.2.2 電場均勻程度

均勻、致密的固體介質(zhì)如處于均勻電場中,其擊穿電壓往往比較高,且擊穿電壓介質(zhì)厚度的增加近似地呈線性增加。若在不均勻電場巾,則擊穿電壓較均勻電場中降低,且隨著介質(zhì)厚度的增加使電場更不均勻,擊穿電壓也不再隨介質(zhì)厚度的增加而線性增加。當(dāng)介質(zhì)厚度的增加使散熱困難時,又會促使發(fā)生熱擊穿,這時靠增加介質(zhì)厚度來提高擊穿電壓就沒有多大的意義。

4.2.3溫度

固體介質(zhì)擊穿的場強(qiáng)很高,而與溫度幾乎無關(guān),但其熱擊穿電壓則隨溫度的升高而降低。由于環(huán)境溫度高不利于固體介質(zhì)的散熱,會使熱擊穿電壓下降。所以,用固體介質(zhì)絕緣材料電氣設(shè)備,如果某處局部溫度過高,在工作電壓下就會有熱擊穿的危險(xiǎn)。為了降低絕緣的溫度,常采取一些散熱措施,如加強(qiáng)風(fēng)冷、油冷及加裝散熱器等。

4.2.4受潮

固體介質(zhì)受潮會使擊穿電壓大大降低,其降低程度與介質(zhì)的性質(zhì)有關(guān)。對于不易吸潮的材料,如聚乙烯、聚四氟乙烯等中性介質(zhì),受潮后擊穿電壓僅降低一半左右;對于易吸潮的材料,如棉紗、紙等纖維材料,吸潮后的擊穿電壓可能只有干燥時的百分之幾或更低,這是因?yàn)殡妼?dǎo)率和介質(zhì)損耗均大大增加的緣故。所以高壓絕緣結(jié)構(gòu)不但在制造時要注意除去水分,在運(yùn)行中也要注意防潮,并定期檢查受潮情況,一旦受潮必須進(jìn)行干燥處理。

4.2.5 累積效應(yīng)

固體介質(zhì)在不均勻電場中,或者在雷電沖擊電壓下,其內(nèi)部可能出現(xiàn)局部放電或者損傷,但并未形成貫穿性的擊穿通道,但在多次沖擊或工頻試驗(yàn)電壓作用下,這種局部放電或者傷痕會逐步擴(kuò)大,這稱為累積效應(yīng)。顯然,由于累積效應(yīng)會使固體介質(zhì)的絕緣性能劣化,導(dǎo)致擊穿電壓下降。因此,在確定電氣設(shè)備試驗(yàn)電壓和試驗(yàn)次數(shù)時應(yīng)充分考慮固體介質(zhì)的這種累積效應(yīng),在設(shè)計(jì)固體絕緣結(jié)構(gòu)時亦應(yīng)保證一定的絕緣裕度。

4.3固體電介質(zhì)的老化

介質(zhì)在電場的長時間作用下,會逐漸發(fā)生某些物理化學(xué)變化,從而使介質(zhì)的物理、化學(xué)性能產(chǎn)生不可逆轉(zhuǎn)的劣化,導(dǎo)致電介質(zhì)電氣及機(jī)械強(qiáng)度下降,介質(zhì)損耗及電導(dǎo)增大等,這一現(xiàn)象稱為絕緣的老化。

引起絕緣老化的原因很多,主要有熱的作用、電的作用、機(jī)械力的作用以及周圍環(huán)境因素的影響,如受潮、氧、臭氧、氮氧化物、各種射線以及微生物的作用等。各種不同的因素除了本身能對絕緣產(chǎn)生老化作用外,還常常互相影響,加速老化過程,盡管老化過程是一個非常復(fù)雜的物理化學(xué)變化過程,但從老化的特征上可將其大體劃分為電老化和熱老化兩大類型。

4.3.1 固體介質(zhì)的電老化

電老化主要是由于電場的作用所產(chǎn)生。根據(jù)電老化的性質(zhì)不同,又可分為電離性老化、電導(dǎo)性老化和電解性老化。

1.電離性老化

電離性老化主要指絕緣內(nèi)部存在的氣隙或氣泡在較強(qiáng)電場下發(fā)生電離而產(chǎn)生局部放電所引起的絕緣老化。

局部放電引起絕緣老化的機(jī)理被認(rèn)為是:帶電粒子對介質(zhì)的撞擊可使有機(jī)介質(zhì)主鏈斷裂,使高分子解聚或部分變成低分子;局部放電引起局部過熱,高溫使絕緣材料產(chǎn)生化學(xué)分解;局部放電產(chǎn)生的活性氣體O3NO、NO2介質(zhì)的氧化和腐蝕,以及由局部放電產(chǎn)生的紫外線或X射線使介質(zhì)分解和解聚;隨后放電道通沿電場方向逐漸向絕緣深處發(fā)展,在某些高分有機(jī)絕緣中常發(fā)展成樹枝狀,稱為“電樹枝"。電樹枝的不斷發(fā)展最終將導(dǎo)致絕緣擊穿。因此,許多高壓電氣設(shè)備都將局部放水平作為檢驗(yàn)其絕緣質(zhì)量的重要指標(biāo)。

絕緣中氣隙或氣泡引起局部放電的機(jī)理可以這樣來解釋:當(dāng)固體介質(zhì)內(nèi)部含有氣隙時,氣隙及與其相串聯(lián)的固體介質(zhì)中的場強(qiáng)分布是與它們的介電常數(shù)成反比。氣體介質(zhì)介電常數(shù)比固體介質(zhì)介電常數(shù)小得多,因此氣隙中的電場強(qiáng)度要比固體介質(zhì)中的電場強(qiáng)度高得多,而氣體的電氣強(qiáng)度又較固體介質(zhì)低,所以當(dāng)外加電壓還遠(yuǎn)小于固體介質(zhì)擊穿電壓時,氣隙中的氣體就首先發(fā)生電離而產(chǎn)生局部放電。

下面對局部放電的發(fā)展過程作簡單分析。

固體介質(zhì)內(nèi)部有單個小氣隙時的等效電路如圖4-3所示。圖中,Cg為氣隙的電容,Cb是與氣隙串聯(lián)的固體介質(zhì)的電容,Ca是固體介質(zhì)其余完好部分的電容,Z為氣隙放電脈沖的電源阻抗。一般情況下氣隙較小,所以Cb?Cg,且Cb?Ca

影響電擊穿、電氣強(qiáng)度、擊穿電壓設(shè)備的因素有哪些?

將瞬時值為u的交流電壓施加在固體介質(zhì)時,Cg上分得的電壓

影響電擊穿、電氣強(qiáng)度、擊穿電壓設(shè)備的因素有哪些?

當(dāng)ugu增大到氣隙的放電電壓Us時,氣隙放電。放電產(chǎn)生的正負(fù)電荷在外加電場作用下分別聚積在氣隙與固體介質(zhì)的上下交界面上,它們建立的電場與外加電場方向相反,從而使Cg上的電壓急劇下降到剩余電壓Ur,放電熄滅。但由于外加電壓u還在上升,Cg上的電壓又隨外加電壓u充電到US,開始第二次放電。同理,第二次放電產(chǎn)生的正負(fù)電荷所建立的電場與外加電場方向相反,所以Cg上的電壓會再次下降到剩余電壓Ur,放電熄滅。當(dāng)外加電壓u不斷下降時,氣隙界面電荷產(chǎn)生的附加電場會超過外加電場,導(dǎo)致反向放電發(fā)生。依此類推,可以推出第四次、第五次、第六次等放電出現(xiàn)的位置與放電的極性,如圖4-4(a)所示。因此,隨著Cg的充放電過程使局部放電重復(fù)發(fā)生,從而在電路中產(chǎn)生由局部放電引起的脈沖電流,如圖4-4(b)所示,其頻率范圍在200~400kHz。

影響電擊穿、電氣強(qiáng)度、擊穿電壓設(shè)備的因素有哪些?

Cg每次放電時,其放電電荷量為

影響電擊穿、電氣強(qiáng)度、擊穿電壓設(shè)備的因素有哪些?

其中:qr為真實(shí)放電量。由于CgCbCa實(shí)際上都是無法測定的,所以qr也無法測定。但是氣隙放電引起的電壓變動(Us-Ur)會按反比分配在CbCa(因從氣隙兩端看CbCa是相串聯(lián)的)。設(shè)在Ca上的電壓變動為?u,則有

影響電擊穿、電氣強(qiáng)度、擊穿電壓設(shè)備的因素有哪些?

這就是說,當(dāng)氣隙放電時,固體介質(zhì)兩端的電壓也會產(chǎn)生電壓降落?u,這相當(dāng)于固體介質(zhì)放掉電荷q,即

影響電擊穿、電氣強(qiáng)度、擊穿電壓設(shè)備的因素有哪些?

其中:q為視在放電量。

通過電源充電在回路中形成電流脈沖。?u和q的值都是可以測量的,因此,通常將q作為度量局部放電強(qiáng)度的參數(shù)。從以上各式可以看出,q既是發(fā)生局部放電時試品電容所放掉的電荷,也是電容Cb上的電荷增量。比較式(4-6)和式(4-8)可得

影響電擊穿、電氣強(qiáng)度、擊穿電壓設(shè)備的因素有哪些?

即視在放電量通常比真實(shí)放電量小得多,但q與qr呈線性關(guān)系,因此通過測量q可以相對地反映出qr的大小。

實(shí)驗(yàn)研究表明,視在放電量,放電重復(fù)率和一次放電所消耗的能量是反映局部放電強(qiáng)弱的三個基本參數(shù)。

如前所述,在交流電壓下,當(dāng)外加電壓較高時,局部放電在半周期內(nèi)可以重復(fù)多次發(fā)生,而在直流電壓下情況就不一樣。由于直流電壓的大小和方向均不變,所以一旦氣隙產(chǎn)生放電,所產(chǎn)生的空間電荷建立的附加電場會使氣隙中的電場削弱,導(dǎo)致放電熄滅,直到空間電荷通過介質(zhì)內(nèi)部的電導(dǎo)消散,使附加電場減小到一定程度后,才能開始第二次放電。由于電介質(zhì)的電導(dǎo)很小,所以空間電荷的消散速度極慢。因此,在其他條件相同的情況下,直流電壓下單位時間內(nèi)的放電次數(shù)一般要比交流電壓下小3~4個數(shù)量級,從而使得介質(zhì)在直流電壓下的局部放電所產(chǎn)生的破壞作用遠(yuǎn)比交電壓下小。

2. 電導(dǎo)性老化

電導(dǎo)性老化指某些高分子機(jī)合成絕緣材料內(nèi)部在某些液態(tài)的導(dǎo)電物質(zhì)(最常見的是水分或制造過程中殘留的某些電解質(zhì)溶液),在電場強(qiáng)度超過某一定值時,這些導(dǎo)電液就會沿電場方向逐漸深入到絕緣層中去,形成近似樹枝狀的痕跡,稱為“水樹枝",使介質(zhì)的絕緣特性老化。

“水樹枝"是由于水或其他電解液中的離子在交變電場作用下往復(fù)沖擊介質(zhì),使其疲勞損傷和化學(xué)分解,隨之逐漸滲透擴(kuò)散到介質(zhì)深處所形成的。實(shí)踐表明,產(chǎn)生“水樹枝"所需的電場強(qiáng)度要比產(chǎn)生“電樹枝"所需的場強(qiáng)低得多;“水樹枝"一旦產(chǎn)生其發(fā)展速度也比“電樹枝"快。

3.電解性老化

電解性老化指在所加電壓還遠(yuǎn)低于局部放電起始電壓的情況下,由于介質(zhì)內(nèi)部進(jìn)行的化學(xué)過程(尤其在直流電壓下最為嚴(yán)重)造成對介質(zhì)的腐蝕、氧化,使介質(zhì)逐漸老化。當(dāng)有潮氣侵入電介質(zhì)時,由于水分本身就能離解出H+O-離子,則會加速電解性老化。隨著溫度的升高,化學(xué)反應(yīng)速度加快,電解性老化的速度也隨之加快。

4.3.2固體電介質(zhì)的熱老化

固體電介質(zhì)的性能在長期受熱的情況下逐漸劣化,失去原來的優(yōu)良性能,稱為熱老化。熱老化的主要過程為熱裂解、氧化裂解以及低分子揮發(fā)物的逸出。熱老化的特征大多數(shù)是使介質(zhì)失去彈性、變硬、變脆,機(jī)械強(qiáng)度降低,也有些介質(zhì)表現(xiàn)為變軟、發(fā)黏、變形,失去機(jī)械強(qiáng)度,與此同時介質(zhì)的電導(dǎo)變大,介質(zhì)損耗增加,擊穿電壓降低,絕緣性能變壞。

由于溫度的升高將使熱老化過程加速,所以根據(jù)熱老化決定的絕緣壽命與絕緣的工作溫度密切相關(guān)。國際電工委員會將各種電工絕緣材料按其耐熱性能劃分等級,并確定各級絕緣材料的最高持續(xù)工作溫度,見表41。

4-1                      電工絕緣材料的耐熱等級

耐熱等級

最高持續(xù)工作溫度(℃)

絕緣材



Y

90

木材、紙、紙板、棉纖維、天然絲;聚乙烯、聚氯乙烯:天然橡膠


A

105

油性樹脂漆及其漆包線;礦物油和沒入其中或經(jīng)其浸潰的纖維材料


E

120

酚醛樹指塑料;膠紙板、膠布板;聚酯薄膜;聚乙烯醉縮甲醛


B

130

瀝青油漆制成的云母帶、玻璃漆布、玻璃膠布板;聚酷漆;環(huán)氧樹脂


F

155

聚酯亞胺漆及其漆包線;改性硅有機(jī)漆及其云母制品及玻璃漆布


H

180

聚酰胺漆及其漆包線;硅有機(jī)漆及其制品;硅橡膠及其玻璃


C

180

聚酰亞胺漆及薄膜;云母;陶瓷、玻璃及其纖維;聚四氟乙烯


使用溫度超過表4-1的規(guī)定,絕緣材料將迅速老化,壽命大大縮短。實(shí)驗(yàn)表明,A絕緣的工作溫度超過規(guī)定值8℃,則壽命大約縮短一半,這通常稱為熱老化的8℃規(guī)則。實(shí)際上對其他各級絕緣的溫度規(guī)定值并不都是8℃,如B級絕緣為10℃,H極絕緣為12℃等。

有機(jī)絕緣材料在熱的作用下發(fā)生著各種化學(xué)變化,包括氧化、熱裂解和縮聚等,這些化學(xué)反應(yīng)的速率決定了材料的熱老化壽命。因此,可應(yīng)用化學(xué)反應(yīng)動力學(xué)推出材料壽命和溫度的關(guān)系。在溫度低于絕緣材料的上限工作溫度時,有機(jī)絕緣由熱老化所決定的絕緣壽命的近似計(jì)算式為

影響電擊穿、電氣強(qiáng)度、擊穿電壓設(shè)備的因素有哪些?

式中:T為實(shí)際使用溫度下的絕緣壽命;A為標(biāo)準(zhǔn)使用溫度下的絕緣壽命;θ為絕緣的實(shí)際使用溫度;θ0為絕緣的標(biāo)定使用溫度;α為熱老化系數(shù),由絕緣的性質(zhì)、結(jié)構(gòu)等因素決定,對A絕緣α0.065~0.12范圍內(nèi)。

為了獲得最佳的經(jīng)濟(jì)技術(shù)效益,在當(dāng)今的技術(shù)經(jīng)濟(jì)條件下,對大多數(shù)電氣設(shè)備(如發(fā)電機(jī)、變壓器、電動機(jī)等)絕緣的正常使用壽命一般認(rèn)定為20~25年,由此就可以確定出該設(shè)備的標(biāo)準(zhǔn)使用溫度。


北京中航時代儀器設(shè)備有限公司
  • 聯(lián)系人:石磊
  • 地址:北京市房山區(qū)經(jīng)濟(jì)技術(shù)開發(fā)區(qū)1號
  • 郵箱:zhsdyq@163.com
  • 傳真:86-010-80224846
關(guān)注我們

歡迎您關(guān)注我們的微信公眾號了解更多信息

掃一掃
關(guān)注我們
版權(quán)所有 © 2024 北京中航時代儀器設(shè)備有限公司 All Rights Reserved    備案號:京ICP備14029093號-1    sitemap.xml
管理登陸    技術(shù)支持:化工儀器網(wǎng)